Exploring and Exploiting Quantum-Dot Cellular Automata

Authors

  • M. R. Reshadinezhad Faculty of Computer Engineering, University of Isfahan, Isfahan, I. R. Iran.
  • S. A. Ebrahimi Faculty of Computer Engineering, University of Isfahan, Isfahan, I. R. Iran.
Abstract:

The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presented for FA; implemented as two at one layer and the other two at three layers; this is performed in a step by step manner and by providing the details and introducing each one’s problems. The layout process continues till an optimized layout is obtained. The layout and correct assessment of the introduced circuit function is accomplished by using QCA Designer simulation tool. The comparison of the results obtained through simulation confirms that the third design is better than other three designs with respect to cell count and area.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

exploring and exploiting quantum-dot cellular automata

the full adders (fas) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. with respect to the mosfet restrictions, its replacement by new devices and technologies is inevitable. qca is one of the accomplishments in nanotechnology nominated as the candidate for mosfet replacement. in this article 4 new layouts are presented fo...

full text

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops

   Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...

full text

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

full text

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

full text

design of optimized quantum-dot cellular automata rs flip flops

complementary metal-oxide semiconductor (cmos) technology has been the industry standard to implement very large scale integrated (vlsi) devices for the last two decades. due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. quantum-dot cellular...

full text

Quantum-Dot Cellular Automata Adders

In this paper, a novel quantum-dot cellular automata (QCA) adder design is presented that reduces the number of QCA cells compared to previously reported designs. The proposed one-bit QCA adder structure is based on a new algorithm that requires only three majority gates and two inverters for the QCA addition. By connecting n one-bit QCA adders, we can obtain an n-bit carry look-ahead adder wit...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  225- 232

publication date 2015-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023